В настоящее время в различных видах портативной электроники и электромобилях широко используются литий ионные аккумуляторы (ЛИА) благодаря их высокой плотности энергии, длительному сроку службы, низкой степени саморазряда. Они хорошо сохраняют свою эффективность, как при комнатной температуре, так и при температурах до +60˚ С. Однако, при отрицательных температурах ЛИА резко теряют как энергию, так и мощность. Для создания низкотемпературных ЛИА используют электролиты с низкой температурой замерзания и пористые наноструктурированные активные материалы, что позволяет добиться ускорения кинетики транспорта заряда. Это требует сложных синтетических процедур при использовании кристаллических неорганических материалов. Альтернативным решением данной задачи может замена неорганических катодных материалов на органические. Однако приведенные в литературе аргументы, касающиеся ускорения кинетики транспорта заряда в аморфных, пористых материалах, должны быть справедливы для различных классов органических соединений. В связи с этим возникает необходимость выполнения запланированных в рамках данного проекта работ, направленных на расширение границ фундаментальных знаний по электрохимии органических электродных материалов в условиях низких температур. Предполагается провести комплексное электрохимическое исследование серии схожих по структуре основной цепи полимерных материалов, отличающихся морфологией и электропроводностью. Изучение процессов массопереноса и переноса заряда в различных электролитах позволит установить зависимости скорости процесса сольватации/десольватации противоионов от состава электролита и предложить эффективные пути повышения скорости массопереноса, как за счёт регулировки свойств материала, так и за счёт подбора электролита. Это позволит создать эффективный катодный материал для аккумуляторов, работающих при низких температурах.
Название | Ссылка |
---|